
 IJDCST @October Issue- V-1, I-6, SW-31

 ISSN-2320-7884 (Online)

 ISSN-2321-0257 (Print)

81 www.ijdcst.com

 Accountability for Data Sharing in a Cloud
 1M.Ravi Teja, 2K.Praveen Kumar

1Dept of CSE,Marri Laxman Reddy Institute of Technology ,Dundigal,Hyderabad-500043, A.P, INDIA

2 Dept of CSE, Marri Laxman Reddy Institute of Technology ,Dundigal, Hyderabad-500043, A.P, INDIA

Abstract— Cloud computing poses a variety of challenges to conventional advanced ICT, mostly due to the fact of the

unprecedented scale and heterogeneity of the required infrastructure. Users’ data are usually processed remotely in unknown

machines that users do not own or operate. It needs to safeguard the security and durability of service based on the demand

of users. The users are also using the cloud flexibly because of this there will be many security problems occur. To address

this problem, here, we propose a novel highly decentralized information accountability framework to keep track of the actual

usage of the users’ data in the cloud. By using object-centered approach that enables enclosing our logging mechanism

together with users’ data and policies. Virtualizations is an essential technological characteristic of clouds which hides the

technological complexity from the user and enables enhanced flexibility (through aggregation, routing transactions) and by

using programmable JAR files to both create a dynamic and traveling object, and to ensure that any access to users’ data will

trigger authentication and automated logging local to the JARs. To strengthen user’s control, we also provide distributed

auditing mechanisms. We provide effectiveness and efficiency for proposed approaches.

Keywords—cloud computing; accountability; datasharing; styling; cloud environment;

I. INTRODUCTION

A 'cloud' is an elastic execution environment of

resources involving multiple stakeholders and providing a

metered service at multiple granularities for a specified

level of quality (of service). Cloud providers typically

centre on one type of cloud functionality provisioning:

Infrastructure, Platform or Software / Application, though

there is potentially no striction to offer multiple type sat the

same time, which can often be observed in PaaS (Platform

as a Service) providers which offer specific applications

too, such as Google App Engine in combination with

Google Docs. Due this combinatorial ability, these types

are also often referred to “components”. To date, there are a

number of notable commercial and individual cloud

computing services, including Amazon, Google, Microsoft,

Yahoo, and Sales force. Details of the services provided are

abstracted from the users who no longer need to be experts

of technology infrastructure. Moreover, users may not

know the machines which actually process and host their

data. it is essential to provide an effective mechanism for

users to monitor the usage of their data in the cloud. For

example, users need to be able to ensure that their data are

handled according to the service level agreements made at

the time they sign on for services in the cloud. First, data

handling can be outsourced by the direct cloud service

provider (CSP) to other entities in the cloud and theses

entities can also delegate the tasks to others, and so on.

Second, entities are allowed to join and leave the cloud in a

flexible manner. As a result, data handling in the cloud goes

through a complex and dynamic hierarchical service chain

which does not exist in conventional environments. To

overcome the above problems, we propose a novel

approach, namely Cloud Information Accountability (CIA)

framework, based on the notion of information

accountability]. Unlike privacy protection technologies

which are built on the hide-it-or-lose-it perspective,

information accountability focuses on keeping the data

usage transparent and tractable. Our proposed CIA

framework provides end-to-end accountability in a highly

distributed fashion. One of the main innovative features of

the CIA framework lies in its ability of maintaining

lightweight and powerful accountability that combines

aspects of access control, usage control and authentication.

By means of the CIA, data owners can track not only

whether or not the service-level agreements are being

honored, but also enforce access and usage control rules as

needed. Associated with the accountability feature, we also

develop two distinct modes for auditing: push mode and

pull mode. The push mode refers to logs being periodically

sent to the data owner or stakeholder while the pull mode

refers to an alternative approach whereby the user (or

another authorized party) can retrieve the logs as needed.

The design of the CIA framework presents substantial

challenges, including uniquely identifying CSPs, ensuring

the reliability of the log, adapting to a highly decentralized

infrastructure, etc. Our basic approach toward addressing

these issues is to leverage and extend the programmable

capability of JAR (Java ARchives) files to automatically

log the usage of the users’ data by any entity in the cloud.

Users will send their data along with any policies such as

access control policies and logging policies that they want

to enforce, enclosed in JAR files, to cloud service

providers. Any access to the data will trigger an automated

and authenticated logging mechanism local to the JARs.

We refer to this type of enforcement as “strong binding”

since the policies and the logging mechanism travel with

the data. This strong binding exists even when copies of the

JARs are created; thus, the user will have control over his

data at any location. Such decentralized logging mechanism

meets the dynamic nature of the cloud but also imposes

challenges on ensuring the integrity of the logging. To cope

with this issue, we provide the JARs with a central point of

contact which forms a link between them and the user. It

records the error correction information sent by the JARs,

which allows it to monitor the loss of any logs from any of

 IJDCST @October Issue- V-1, I-6, SW-31

 ISSN-2320-7884 (Online)

 ISSN-2321-0257 (Print)

82 www.ijdcst.com

the JARs. Moreover, if a JAR is not able to contact its

central point, any access to its enclosed data will be denied.

Our experiments demonstrate the efficiency, scalability and

granularity of our approach. In addition, we also provide a

detailed security analysis and discuss the reliability and

strength of our architecture in the face of various nontrivial

attacks, launched by malicious users or due to compromised

Java Running Environment (JRE).In summary, our main

contributions are as follows:. We propose a novel automatic

and enforceable logging mechanism in the cloud. To our

knowledge, this is the first time a systematic approach to

data accountability through the novel usage of JAR files is

proposed.. Our proposed architecture is platform

independent and highly decentralized, in that it does not

required. We go beyond traditional access control in that

we provide a certain degree of usage control for the

protected data after these are delivered to the receiver.. We

conduct experiments on a real cloud testbed.The results

demonstrate the efficiency, scalability, and granularity of

our approach. We also provide a detailed security analysis

and discuss the reliability and strength of our architecture.

We have made the following new contributions. First, we

integrated integrity checks and oblivious hashing (OH)

technique to our system in order to strengthen the

dependability of our system in case of compromised JRE.

We also updated the log records structure to provide

additional guarantees of integrity and authenticity. Second,

we extended the security analysis to cover more possible

attack scenarios. Third, we report the results of new

experiments and provide a thorough evaluation of the

system performance. Fourth, we have added a detailed

discussion on related works to prepare readers with a better

understanding of background knowledge. Finally, we have

improved the presentation by adding more examples and

illustration graphs.

II. SECRITY PROVIDE

In this section, we first review related works addressing

the privacy and security issues in the cloud. Then, we

briefly discuss works which adopt similar techniques as our

approach but serve for different purposes.

 PRIVACY: To overcome the above problems, we propose

a novel method, namely Cloud Information Accountability

(CIA) framework, based on the notion of information

accountability. Data Owner can upload the data into the

cloud server after encrypted the data. User can subscribe

into the cloud server with certain access polices such as

read, write and copy of the original data. The Loggers and

Log Harmonizer will have a track of the access logs and

reports to the data owner. This Process ensures security.

Many of the tasks necessary with cloud computing must

be automated. For example, to protect the integrity of the

data, information stored on a single computer in the cloud

must be replicated on other computers in the cloud. If that

one computer goes offline, the cloud’s programming

automatically redistributes that computer’s data to new

computers in the cloud. Computing in the cloud may

provide additional Such issues are due to the fact that, in

the cloud, users’ data and applications reside—at least for a

certain amount of time—on the cloud cluster which is

owned and maintained by a third party. Concerns arise

since in the cloud it is not always clear to individuals why

their personal information is requested or how it will be

used or passed on to other parties. To date, little work has

been done in this space, in particular with respect to

accountability. Pearson et al. have proposed accountability

mechanisms to address privacy concerns offend users [30]

and then develop a privacy manager [31]. Their basic idea

is that the user’s private data are sent to the cloud in an

encrypted form, and the processing is done on the

encrypted data. The output of the processing is

deobfuscated by the privacy manager to reveal the correct

result. However, the privacy manager provides only limited

features in that it does not guarantee protection once the

data are being disclosed. In [7], the authors present a

layered architecture for addressing the end-to-end trust

management and accountability problem in federated

systems. The authors’ focus is very different from ours, in

that they mainly leverage trust relationships for

accountability, along with authentication and anomaly

detection. Further, their solution requires third-party

services to complete the monitoring and focuses on lower

level monitoring of system resources. Researchers have

investigated accountability mostly as a provable property

through cryptographic mechanisms, particularly in the

context of electronic commerce A representative work in

this area is given by related to accountability in case of

delegation. Delegation is complementary to our work, in

that we do not aim at controlling the information workflow

in the clouds. In a summary, all these works stay at a

theoretical level and do not include any algorithm for tasks

like mandatory logging. To the best of our knowledge, the

only work proposing a distributed approach to

accountability is from Lee and colleagues. The authors have

proposed an agent-based system specific to grid computing.

Distributed jobs, along with the resource consumption at

local machines are tracked by static software agents. The

notion of accountability policies in is related to ours, but it

is mainly focused on resource consumption and on tracking

of sub jobs processed at multiple computing nodes.

III.TECHNOLOGY USED FOR SECURITY

Java-based techniques for security, our methods are

related to self-defending objects. Self-defending objects are

an extension of the object-oriented programming paradigm,

where software objects that offer sensitive functions or hold

sensitive data are responsible for protecting those

functions/data. Similarly, we also extend the concepts of

object-oriented programming. The key difference in our

implementations is that the authors still rely on a

centralized database to maintain the access records, while

the items being protected are held as separate files. In

previous work, we provided a Java-based approach to

prevent privacy leakage from indexing , which could be

integrated with the CIA framework proposed in this work

since they build on related architectures. In terms of

authentication techniques, [Appel and Felten] proposed the

Proof-Carrying authentication (PCA) framework. The PCA

includes a high order logic language that allows

quantification over predicates, and focuses on access

control for web services. While related to ours to the extent

that it helps maintaining safe, high-performance, mobile

code, the PCA’s goal is highly different from our research,

as it focuses on validating code, rather than monitoring

content. Another work is by Mont et al. who proposed an

approach for strongly coupling content with access control,

using Identity-Based Encryption (IBE) . We also leverage

IBE techniques, but in a very different way. We do not rely

on IBE to bind the content with the rules. Instead, we use it

to provide strong guarantees for the encrypted content and

the log files, such as protection against chosen plaintext and

cipher text attacks. In addition, our work may look similar

 IJDCST @October Issue- V-1, I-6, SW-31

 ISSN-2320-7884 (Online)

 ISSN-2321-0257 (Print)

83 www.ijdcst.com

to works on secure data provenance but in fact greatly

differs from them in terms of goals, techniques, and

application domains. Works on data provenance aim to

guarantee data integrity by securing the data provenance.

They ensure that no one can add or remove entries in the

middle of a provenance chain without detection, so that

data are correctly delivered to the receiver. Differently, our

work is to provide data accountability, to monitor the usage

of the data and ensure that any access to the data is tracked.

Since it is in a distributed environment, we also log where

the data go. However, this is not for verifying data integrity,

but rather for auditing whether data receivers use the data

following specified policies. Along the lines of extended

content protection, usage control is being investigated as an

extension of current access control mechanisms. Current

efforts on usage control are primarily focused on

conceptual analysis of usage control requirements and on

languages to express constraints at various level of

granularity. While some notable results have been achieved

in this respect thus far, there is no concrete contribution

addressing the problem of usage constraints enforcement,

especially in distributed settings. The few existing solutions

are partial, restricted to a single domain, and often

specialized. Finally, general outsourcing techniques have

been investigated over the past few years. Although only is

specific to the cloud, some of the outsourcing protocols

may also be applied in this realm. In this work, we do not

cover issues of data storage security which are a

complementary aspect of the privacy issues.

IV. SOLUTION FOR PROBLEM

We tested our CIA framework by setting up a small

cloud, using the Emu lab test bed In particular, the test

environment consists of several Open SSL-enabled servers:

1. Notice that we do not consider the attack on the log

harmonizer component, since it is saved separately in either

a secure proxy or at the user end and the attacker typically

cannot access it. As a result, we consider that the attacker

cannot extract the decryption keys from the log harmonizer.

One head node which is the certificate authority and several

computing nodes. Each of the servers is installed with

eucalyptus .Eucalyptus is an open source cloud

implementation for Linux-based systems. It is loosely on

the basis of Amazon EC2, so bringing the powerful

functionalities of Amazon EC2 into the open source

domain. We set to work Linux-based servers running

Fedora 10 OS. Each server has a 64-bit Intel Quad Core

Xeon E5530 processor, 4 GB RAM, and a 500 GB Hard

Drive. Each of the servers is arrayed to run the Open JDK

runtime environment with Iced Tea. In the experiments, we

first examine the time taken to create log file and then

measure the overhead in the system. With respect to time,

the overhead can occur at three points: at the time of the

authentication, during encryption of a log record, and at the

time of the merging of the logs. Also, with respect to

storage overhead, we notice that our architectures very

lightweight, in that the only data to be stored are provided

by the actual files and the associated logs. Further, JAR

appear as a compressor of the files that it handles. In

particular, as proposed, multiple files can be managed by

the same logger component. To this extent, we checked

whether a single logger component, used to manage more

than one file, results in storage overhead. Example 1. Alice,

a professional photographer, plans to sell her photographs

by using the SkyHigh Cloud Services.

For her business in the cloud, she has the following

requirements:

 Her photographs are downloaded only by users

who have paid for her services.

 Potential buyers are allowed to view her pictures

first before they make the payment to obtain the

download right.

 Due to the nature of some of her works, only

users from certain countries can view or

download some sets of photographs.

 For some of her works, users are allowed to only

view them for a limited time, so that the users

cannot reproduce her work easily.

 In case any dispute arises with a client, she wants

to have all the access information of that client.

 She wants to ensure that the cloud service

providers of SkyHigh do not share her data with

other service providers, so that the accountability

provided for individual users can also be expected

from the cloud service providers.

We aim to develop novel logging and auditing

techniques which satisfy the following requirements:

 In the first round of experiments, we are concerned in

finding out the time taken to create a log file when there are

entities continuously accessing the data, causing continuous

logging. It is not surprising to identify that the time to

create a log file increases linearly with the size of the log

file. Specifically, the time to develop a 100 Kb file is about

114.5 ms while the time to create a 1 MB file averages at

731 ms. With this experiment as the baseline, one can

figure out the amount of time to be specified between

dumps, keeping other variables like space constraints or

network traffic in mind.

 The logging should be decentralized in order to

adapt to the dynamic nature of the cloud. More

specifically, log files should be tightly bounded

with the corresponding data being controlled, and

require minimal infrastructural support from any

server.

 Every access to the user’s data should be

correctly and automatically logged. This requires

integrated techniques to authenticate the entity

who accesses the data, verify, and record the

actual operations on the data as well as the time

that the data have been accessed.

 Log files should be reliable and tamper proof to

avoid illegal insertion, deletion, and modification

by malicious parties. Recovery mechanisms are

also desirable to restore damaged log files caused

by technical problems.

 Log files should be sent back to their data owners

periodically to inform them of the current usage

of their data. More importantly, log files should

be retrievable anytime by their data owners when

needed regardless the location where the files are

stored.

 The proposed technique should not intrusively

monitor data recipients’ systems,nor it should

introduce heavy communication and computation

overhead, which otherwise will hinder its

feasibility and adoption in practice.

 IJDCST @October Issue- V-1, I-6, SW-31

 ISSN-2320-7884 (Online)

 ISSN-2321-0257 (Print)

84 www.ijdcst.com

V. ABOUT CIA

The Cloud Information Accountability framework

proposed in this work conducts automated logging and

distributed auditing of relevant access performed by any

entity, carried out at any point of time at any cloud service

provider. It has two major components: logger and log

harmonizer.

VI. COMPONENTS OF CIA

There are two major components of the CIA, the first

being the logger, and the second being the log harmonizer.

The logger is the component which is strongly coupled with

the user’s data, so that it is downloaded when the data are

accessed, and is copied whenever the data are copied. It

handles a particular instance or copy of the user’s data and

is responsible for logging access to that instance or copy.

The log harmonizer forms the central component which

allows the user access to the log files. The logger is

strongly coupled with user’s data (either single or multiple

data items). Its main tasks include automatically logging

access to data items that it contains, encrypting the log

record using the public key of the content owner, and

periodically sending them to the log harmonizer. It may

also be configured to ensure that access and usage control

policies associated with the data are honored. For example,

a data owner can specify that user X is only allowed to

view but not to modify the data. The logger will control the

data access even after it is downloaded by user X. The

logger requires only minimal support from the server (e.g.,

a valid Java virtual machine installed) in order to be

deployed. The tight coupling between data and logger,

results in a highly distributed logging system, therefore

meeting our first design requirement. Furthermore, since

the logger does not need to be installed on any system or

require any special support from the server, it is not very

intrusive in its actions, thus satisfying our fifth requirement.

Finally, the logger is also responsible for generating the

error correction information for each log record and sends

the same to the log harmonizer. The error correction

information combined with the encryption and

authentication mechanism provides a robust and reliable

recovery mechanism, therefore meeting the third

requirement.

The log harmonizer is responsible for auditing. Being the

trusted component, the log harmonizer generates the master

key. It holds on to the decryption key for the IBE key pair,

as it is responsible for decrypting the logs. Alternatively,

the decryption can be carried out on the client end if the

path between the log harmonizer and the client is not

trusted. In this case, the harmonizer sends the key to the

client in a secure key exchange. It supports two auditing

strategies: push and pull. Under the push strategy, the log

file is pushed back to the data owner periodically in an

automated fashion. The pull mode is an on-demand

approach, whereby the log file is obtained by the data

owner as often as requested.

 These two modes allow us to satisfy the aforementioned

fourth design requirement. In case there exist multiple

loggers for the same set of data items, the log harmonizer

will merge log records from them before sending back to

the data owner. The log harmonizer is also responsible for

handling log file corruption. In addition, the log harmonizer

can itself carry out logging in addition to auditing.

Separating the logging and auditing functions improves the

performance. The logger and the log harmonizer are both

implemented as lightweight and portable JAR files. The

JAR file implementation provides automatic logging

functions, which meets the second design requirement.

VII.SHARING DATA

The overall CIA framework, combining data, users,

logger and harmonizer is sketched in Fig. 1. At the

beginning, each user creates a pair of public and private

keys based on Identity-Based Encryption. This IBE scheme

is a Weil-pairing-based IBE scheme, which protects us

against one of the most prevalent attacks. Using the

generated key, the user will create a logger component

which is a JAR file, to store its data items. The JAR file

includes a set of simple access control rules specifying

whether and how the cloud servers and possibly other data

stakeholders (users, companies) are authorized to access the

content itself. Then, he sends the JAR file to the cloud

service provider that he subscribes to. To authenticate the

CSP to the JAR, we use OpenSSLbased certificates,

wherein a trusted certificate authority certifies the CSP. In

the event that the access is requested by a user, we employ

SAML-based authentication [8], wherein a trusted identity

provider issues certificates verifying the user’s identity

based on his username.

The next point that the overhead can occur is during the

authentication of a CSP. If the time taken for this

authentication is too long; it may become a bottleneck for

accessing the enclosed data. To evaluate this, the head node

issued OpenSSL certificates for the computing nodes and

we measured the total time for the OpenSSL authentication

to be completed and the certificate revocation to be

investigated. Considering one access at the time, we got

that the authentication time averages around 920 ms which

proves that not too much overhead is added during this

phase. As of present, the authentication takes place each

time the CSP needs to access the data. The performance can

be further improved by caching the certificates. The time

for authenticating an end user is about the same when we

consider only the actions required by the JAR, viz.

acquiring a SAML certificate and then evaluating it. This is

due to both the OpenSSL and the SAML certificates are

handled in a similar fashion by the JAR. When we consider

the user actions (i.e., submitting his username to the JAR),

it averages at 1.2 minutes.

 SEND MERGED LOGES TO USER

 JAR

 CREATION

 IBE KEY

 ERROR

 CORRECTION

 DUMP LOG

CRL

VERIFICATION

Data
owne

r

Jar

generation

Certificate

authority

C jar

 IJDCST @October Issue- V-1, I-6, SW-31

 ISSN-2320-7884 (Online)

 ISSN-2321-0257 (Print)

85 www.ijdcst.com

 JAR ACCESS

 AUTHENTICATION

 REQUEST

CLOUDSERVICE

PROVIDER

 AUTHENTICATION RESPONCE

 Fig: Input design for data sharing

VIII.AUTOMATIC LOGGING USING LOGGER

We leverage the programmable capability of JARs to

conduct automated logging. A logger component is a nested

Java JAR file which stores a user’s data items and

corresponding log files. As shown in Fig. 2, our proposed

JAR file consists of one outer JAR enclosing one or more

inner JARs

The main responsibility of the outer JAR is to handle

authentication of entities which want to access the data

stored in the JAR file. In our context, the data owners may

not know the exact CSPs that are going to handle the data.

Hence, authentication is specified according to the servers

‘functionality (which we assume to be known through a

lookup service), rather than the server’s URL or identity.

For example, a policy may state that Server X is allowed to

download the data if it is a storage server. As discussed

below, the outer JAR may also have the access control

functionality to enforce the data owner’s requirements,

specified as Java policies, on the usage of the data. A Java

policy specifies which permissions are available for a

particular piece of code in a Java application environment.

The permissions expressed in the Java policy are in terms

of File System Permissions. However, the data owner can

specify the permissions in user-centric terms as opposed to

the usualcode-centric security offered by Java, using Java

Authentication

Authorization Services. Moreover, the outer JAR is also in

charge of selecting the correct inner JAR according to the

identity of the entity who requests the data.

 OUTER JAR

 INNER JAR

 ENCRYPTED
 IMAGE
 LOGGING MODULE

 Fig: Inner and outer jar for data sharing

a. RECORD: Log records are generated by the

logger component. Logging occurs at any access

to the data in the JAR, and new log entries are

appended sequentially, in order of creation LR ¼

hr1; . . . ; rki. Each record ri is encrypted

individually and appended to the log file. In

particular, a log record takes the following form:

ri ¼ hID; Act; T; Loc; hððID; Act; T; LocÞjri _ 1j . . .

jr1Þ; sigi:

Here, ri indicates that an entity identified by I D has

performed an action Act on the user’s data at time T at

location Loc. The component hððID; Act; T; LocÞjri _ 1j . .

. jr1Þ corresponds to the checksum of the records preceding

the newly inserted one, concatenated with the main content

of the record itself (we use I to denote concatenation). The

checksum is computed using a collision-free hash function.

The component sig denotes the signature of the record

created by the server. If more than one file is handled by the

same logger an additional Obj ID field is added to each

record. Suppose that a cloud service provider with ID

BABU, located in INDIA, read the image in a JAR file (but

did not download it) at 2:32 pm on Nov 20, 2013. The

corresponding log record is Raviteja, View, 2013-12-29

16:52:30,INDIA, 45rftT024g, r94gm30130ffi.

The location is converted from the IP address for

improved readability. To ensure the correctness of the log

records, we verify the access time, locations as well as

actions. In particular, the time of access is determined using

the Network Time Protocol (NTp) to avoid suppression of

the correct time by a malicious entity. The location of the

cloud service provider can be determined using IP address.

The JAR can perform an IP lookup and use the range of the

IP address to find the most probable location of the CSP.

More advanced techniques for determining location can

also be used. Similarly, if a trusted time stamp management

infrastructure can be set up or leveraged, it can be used to

record the time stamp in the accountability log [1]. The

most critical part is to log the actions on the users’ data. In

the current system, we support four types of actions, i.e.,

Act has one of the following four values: view, download,

timed access, and Location-based access. For each action,

we propose a specific method to correctly record or enforce

it depending on the type of the logging module, which are

elaborated as follows:

Data

owner Jar

Property file

(Encrypted logging)

Server open

ssl

authenticati

on

Algorithm for

correct inner jar

GUI

INTERFAC

E

Java policy

<192.16.3

3>

Algorithm

for log files

Application

viewer

Decrypt

ed data

 IJDCST @October Issue- V-1, I-6, SW-31

 ISSN-2320-7884 (Online)

 ISSN-2321-0257 (Print)

86 www.ijdcst.com

 View: The entity (e.g., the cloud service

provider) can only read the data but is not

allowed to save a raw copy of it anywhere

permanently.

For this type of action, the PureLog will simply write

a log record about the access, while the AccessLogs

will enforce the action through the enclosed access

control module. Recall that the data are encrypted and

stored in the inner JAR. When there is a view-only

access request, the inner JAR will decrypt the data on

the fly and create a temporary decrypted file. The

decrypted file will then be displayed to the entity

using the Java application viewer in case the file is

displayed to a human user. Presenting the data in the

Java application, viewer disables the copying

functions using right click or other hot keys such as

Print Screen. Further, to prevent the use of some

screen capture software, the data will be hidden

whenever the application viewer screen is out of

focus.

 CSP Download: The entity is allowed to save a

raw copy of the data and the entity will have no

control over this copy neither log records

regarding access to the copy. If PureLog is

adopted, the user’s data will be directly

downloadable in a pure form using a link.

When an entity clicks this download link, the JAR

file associated with the data will decrypt the data and

give it to the entity in raw form. In case of Access

Logs, the entire JAR file will be given to the entity. If

the entity is a human user, he/she just needs to double

click the JAR file to obtain the data If the entity is a

CSP, it can run a simple script to execute the JAR.

Timed_access. This action is combined with the view-

only access, and it indicates that the data are made

available only for a certain period of time. The

Purelog will just record the access starting time and its

duration, while the AccessLog will enforce that the

access is allowed only within the specified period of

time. The duration for which the access is allowed is

calculated using the Network Time Protocol. To

enforce the limit on the duration, the Access Log

records the start time using the NTP, and then uses a

timer to stop the access. Naturally, this type of access

can be enforced only when it is combined with the

View access right and not when it is combined with

the Download. Location-based_access. In this case,

the Pure Log will record the location of the entities.

The AccessLog will verify the location for each of

such access. The access is granted and the data are

made available only to entities located at locations

specified by the data owner.

 Log Dependability: In this section, we discuss

how we ensure the dependability of logs. In

particular, we aim to prevent the following two

types of attacks. First, an attacker may try to

evade the auditing mechanism by storing the

JARs remotely, corrupting the JAR, or trying to

prevent them from communicating with the user.

Second, the attacker may try to compromise the

JRE used to run the JAR files.

 Main responsibilities: to deal with copies of

JARs and to recover corrupted logs. Each log

harmonizer is in charge of copies of logger

components containing the same set of data

items. The harmonizer is implemented as a JAR

file. It does not contain the user’s data items

being audited, but consists of class files for both

a server and a client processes to allow it to

communicate with its logger components. The

harmonizer stores error correction information

sent from its logger components, as well as the

user’s IBE decryption key, to decrypt the log

records and handle any duplicate records.

Duplicate records result from copies of the user’s

data JARs.

Since user’s data are strongly coupled with the logger

component in a data JAR file, the logger will be copied

together with the user’s data. Consequently, the new copy

of the logger contains the old log records with respect to the

usage of data in the original data JAR file. Such old log

records are redundant and irrelevant to the new copy of the

data. To present the data owner an integrated view, the

harmonizer will merge log records from all copies of the

data JARs by eliminating redundancy. For recovering

purposes, logger components are required to send error

correction information to the harmonizer after writing each

log record.

Therefore, logger components always ping the

harmonizer before they grant any access right. If the

harmonizer is not reachable, the logger components will

deny all access. In this way, the harmonizer helps prevent

attacks which attempt to keep the data JARs offline for

unnoticed usage. If the attacker took the data JAR offline

after the harmonizer was pinged, the harmonizer still has

the error correction information about this access and will

quickly notice the missing record. In case of corruption of

JAR files, the harmonizer will recover the logs with the aid

of Reed-Solomon error correction code. Specifically, each

individual logging JAR, when created, contains a Reed-

Solomon-based encoder. For every n symbols in the log

file, n redundancy symbols are added to the log harmonizer

in the form of bits. This creates an error correcting code of

size 2n and allows the error correction to detect and correct

n errors. We choose the Reed- Solomon code as it achieves

the equality in the Singleton Bound, making it a maximum

distance separable code and hence leads to an optimal error

correction. The log harmonizer is located at a known IP

address. Typically, the harmonizer resides at the user’s end

as part of his local machine, or alternatively, it can either be

stored in a user’s desktop or in a proxy server.

 Correcting The Logs: For the logs to be

correctly recorded, it is essential that the JRE of

the system on which the logger components are

running remain unmodified. To verify the

integrity of the logger component, we rely on a

two-step process:

1) We repair the JRE before the logger is launched

and any kind of access is given, so as to provide

guarantees of integrity of the JRE.

2) We insert hash codes, which calculate the hash

values of the program traces of the modules being

executed by the logger component. This helps us

detect modifications of the JRE once the logger

component has been launched, and are useful to verify

if the original code flow of execution is altered.

These tasks are carried out by the log harmonizer

and the logger components in tandem with each other

harmonizer is solely responsible for checking the

integrity of the JRE on the systems on which the

logger components exist before the execution of the

logger components is started. Trusting this task to the

 IJDCST @October Issue- V-1, I-6, SW-31

 ISSN-2320-7884 (Online)

 ISSN-2321-0257 (Print)

87 www.ijdcst.com

log harmonizer allows us to remotely validate the

system on which our infrastructure is working. The

repair step is itself a two-step process where the

harmonizer first recognizes the Operating System

being used by the cloud machine and then tries to

reinstall the JRE. The OS is identified using nmap

commands. The JRE is reinstalled using commands

such as sudo apt install for Linux-based systems or $

<jre>.exe [lang=] [s] [IEXPLORER=1]

[MOZILLA=1] [INSTALLDIR=:] [STATIC=1] for

Windows-based systems.

The logger and the log harmonizer work in tandem to

carry out the integrity checks during runtime. These

integrity checks are carried out using oblivious hashing .

OH works by adding additional hash codes into the

programs being executed. The hash function is initialized at

the beginning of the program, the hash value of the result

variable is cleared and the hash value is updated every time

there is a variable assignment, branching, or looping. As

shown, the hash code captures the computation results of

each instruction and computes the oblivious-hash value as

the computation proceeds. These hash codes are added to

the logger components when they are created. They are

present in both the inner and outer JARs. The log

harmonizer stores the values for the hash computations. The

values computed during execution are sent to it by the

logger components. The log harmonizer proceeds to match

these values against each other to verify if the JRE has been

tampered with. If the JRE is tampered, the execution values

will not match. Adding OH to the logger components also

adds an additional layer of security to them in that any

tampering of the logger components will also result in the

OH values being corrupted.

IX.PUSH AND PULL CONCEPT

A). Push mode:

In this mode, the logs are periodically pushed to the

data owner (or auditor) by the harmonizer. The push action

will be triggered by either type of the following two events:

one is that the time elapses for a certain period according to

the temporal timer inserted as part of the JAR file; the other

is that the JAR file exceeds the size stipulated by the

content owner at the time of creation. After the logs are sent

to the data owner, the log files will be dumped, so as to free

the space for future access logs. Along with the log files,

the error correcting information for those logs is also

dumped. For the every periodical time the Cloud Server

will send the access details of the user to the data owner. So

that the Data Owner may able to know who’re all the

accessing their data at the particular time period. During the

registration phase, the Data owner will ask by the Cloud

Server whether they’re choosing the push or pull method.

This push mode is the basic mode which can be adopted by

both the Pure Log and the Access Log, regardless of

whether there is a request from the data owner for the log

files. This mode serves two essential functions in the

logging architecture: 1) it ensures that the size of the log

files does not explode and 2) it enables timely detection and

correction of any loss or damage to the log files.

Concerning the latter function, we notice that the auditor,

upon receiving the log file, will verify its cryptographic

guarantees, by checking the records’ integrity and

authenticity. By construction of the records, the auditor will

be able to quickly detect forgery of entries, using the

checksum added to each and every record.

B). Pull mode:

In the Pull method, the data owner has to send the

request to the Cloud Server regarding the access details of

their data up to the particular time. Then the Cloud Server

will send the response to the Data Owner regarding the

user’s access details. This mode allows auditors to retrieve

the logs anytime when they want to check the recent access

to their own data. The pull message consists simply of an

FTP pull command, which can be issues from the command

line. For naive users, a wizard comprising a batch file can

be easily built. The request will be sent to the harmonizer,

and the user will be informed of the data’s locations and

obtain an integrated copy of the authentic and sealed log

file.

ALGORITHM:

Step 1: LET TS (NTP) be the network time protocol

Step 2: pull=0

Step 3: rec :=(UID, OID, Access type, Result, Time, Loc)

Step 4: Curtime: =TS (NTP)

Step 5: Lsize: = sizeos(log)// current size of log

Step 6: if((cuttime –

tbeg)<time)&&((size<size)&&(pull==0)

 Then

Step 7: log: = log + ENCRYPT (REC)//ENCRYPT is the

encryption function used to encrypt

the record

Step 8: PING TO CJAR// send a ping to harmonizer to

check if it is alive

Step 9: if (PING-CJAR) then

Step 10: PUSH RS (rec)// write the error correcting bits

Step 11: else

Step 12: EXIT (1)//error if no ping is received

Step 13: end if

Step 14: end if

Step 15: if((cut time –tbeg)>time)||(size>=size)||(pull!=0)

then

Step 16: // check if is received

Step 17: if (PING – CJAR) then

Step 18: PUSH Log // write the log file to harmonizer

Step 19: RS(log) = NULL//reset the error correction records

Step 20: tbeg: =TS (NTP)//reset the tbeg variable

Step 21: pull=0

Step 22: else

Step 23: EXIT (1) // error if no ping is received

Step 24: end if

Step 25: end if

X.SECURITY ATTACKS

The most intuitive attack is that the attacker copies entire

JAR files. The attacker may assume that doing so allows

accessing the data in the JAR file without being noticed by

the data owner. However, such attack will be detected by

our auditing mechanism. Recall that every JAR file is

required to send log records to the harmonizer. In

particular, with the push mode, the harmonizer will send the

logs to data owners periodically. That is, even if the data

owner is not aware of the existence of the additional copies

of its JAR files, he will still be able to receive log files from

all existing copies. If attackers move copies of JARs to

places where the harmonizer cannot connect, the copies of

JARs will soon become inaccessible. This is because each

JAR is required to write redundancy information to the

harmonizer periodically. If the JAR cannot contact the

harmonizer, the access to the content in the JAR will be

 IJDCST @October Issue- V-1, I-6, SW-31

 ISSN-2320-7884 (Online)

 ISSN-2321-0257 (Print)

88 www.ijdcst.com

disabled. Thus, the logger component provides more

transparency than conventional log files encryption; it

allows the data owner to detect when an attacker has

created copies of a JAR, and it makes offline files

unaccessible. Another possible attack is to disassemble the

JAR file of the logger and then attempt to extract useful

information out of it or spoil the log records in it. Given the

ease of disassembling JAR files, this attack poses one of the

most serious threats to our architecture. Since we cannot

prevent an attacker to gain possession of the JARs, we rely

on the strength of the cryptographic schemes applied to

preserve the integrity and confidentiality of the logs. Once

the JAR files are disassembled, the attacker is in possession

of the public IBE key used for encrypting the log files, the

encrypted log file itself, and the *.class files. Therefore, the

attacker has to rely on learning the private key or

subverting the encryption to read the log records. To

compromise the confidentiality of the log files, the attacker

may try to identify which encrypted log records correspond

to his actions by mounting a chosen plaintext attack to

obtain some pairs of encrypted log records and plain texts.

However, the adoption of the Weil Pairing algorithm

ensures that the CIA framework has both chosen cipher text

security and chosen plaintext security in the random oracle

model . Therefore, the attacker will not be able to decrypt

any data or log files in the disassembled JAR file. Even if

the attacker is an authorized user, he can only access the

actual content file but he is not able to decrypt any other

data including the log files which are viewable only to the

data owner.1 From the disassembled JAR files, the

attackers are not able to directly view the access control

policies either, since the original source code is not

included in the JAR files. If the attacker wants to infer

access control policies, the only possible way is through

analyzing the log file. This is, however, very hard to

accomplish since, as mentioned earlier, log records are

encrypted and breaking the encryption is computationally

hard.

Middle attacks: An attacker may intercept messages

during the authentication of a service provider with the

certificate authority, and reply the messages in order to

masquerade as a legitimate service provider. There are two

points in time that the attacker can replay the messages.

One is after the actual service provider has completely

disconnected and ended a session with the certificate

authority. The other is when the actual service provider is

disconnected but the session is not over, so the attacker may

try to renegotiate the connection. The first type of attack

will not succeed since the certificate typically has a time

stamp which will become obsolete at the time point of

reuse. The second type of attack will also fail since

renegotiation is banned in the latest version of OpenSSL

and cryptographic checks have been added.

PROBLEM RESULT: In the first round of experiments,

we are interested in finding out the time taken to create a

log file when there are entities continuously accessing the

data, causing continuous logging. It is not surprising to see

that the time to create a log file increases linearly with the

size of the log file. Specifically, the time to create a 100 Kb

file is about 114.5 ms while the time to create a 1 MB file

averages at 731 ms. With this experiment as the baseline,

one can decide the amount of time to be specified between

dumps, keeping other variables like space constraints or

network traffic in mind. The next point that the overhead

can occur is during the authentication of a CSP. If the time

taken for this authentication is too long, it may become a

bottleneck for accessing the enclosed data. To evaluate this,

the head node issued OpenSSL certificates for the

computing nodes and we measured the total time for the

OpenSSL authentication to be completed and the certificate

revocation to be checked. Considering one access at the

time, we find that the authentication time averages around

920 ms which proves that not too much overhead is added

during this phase. As of present, the authentication takes

place each time the CSP needs to access the data. The

performance can be further improved by caching the

certificates. The time for authenticating an end user is about

the same when we consider only the actions required by the

JAR, viz. obtaining a SAML certificate and then evaluating

it. This is because both the OpenSSL and the SAML

certificates are handled in a similar fashion by the JAR.

When we consider the user actions (i.e., submitting his

username to the JAR), it averages at 1.2 minutes. This set

of experiments studies the effect of log file size on the

logging performance. We measure the average time taken

to grant an access plus the time to write the corresponding

log record. The time for granting any access to the data

items in a JAR file includes the time to evaluate and

enforce the applicable policies and to locate the requested

data items. In the experiment, we let multiple servers

continuously access the same data JAR file for a minute

and recorded the number of log records generated. Each

access is just a view request and hence the time for

executing the action is negligible. As a result, the average

time to log an action is about 10 seconds, which includes

the time taken by a user to double click the JAR or by a

server to run the script to open the JAR.

We also measured the log encryption time which is about

300 ms (per record) and is seemingly unrelated from the log

size. To check if the log harmonizer can be a bottleneck, we

measure the amount of time required to merge log files. In

this experiment, we ensured that each of the log files had 10

to 25 percent of the records in common with one other. The

exact number of records in common was random for each

repetition of the experiment. The time was averaged over

10 repetitions. We tested the time to merge up to 70 log

files of 100 KB, 300 KB, 500 KB, 700 KB, 900 KB, and 1

MB each. The results are shown in Fig. 6. We can observe

that the time increases almost linearly to the number of files

and size of files, with the least time being taken for merging

two 100 KB log files at 59 ms, while the time to merge 70 1

MB files was 2.35 minutes.

XI.SIZE OF COMPLETE JAR FILE

Finally, we investigate whether a single logger, used to

handle more than one file, results in storage overhead. We

measure the size of the loggers (JARs) by varying the

number and size of data items held by them. We tested the

 IJDCST @October Issue- V-1, I-6, SW-31

 ISSN-2320-7884 (Online)

 ISSN-2321-0257 (Print)

89 www.ijdcst.com

increase in size of the logger containing 10 content files

(i.e.,images) of the same size as the file size increases.

Intuitively, in case of larger size of data items held by a

logger, the overall logger also increases in size. The size of

logger grows from 3,500 to 4,035 KB when the size of

content items changes from 200 KB to 1 MB. Overall, due

to the compression provided by JAR files, the size of the

logger is dictated by the size of the largest files it contains.

Notice that we purposely did not include large log files

(less than 5 KB), so as to focus on the overhead added by

having multiple content files in a single JAR We

investigate the overhead added by both the JRE

installation/repair process, and by the time taken for

computation of hash codes. The time taken for JRE

installation/repair averages around 6,500 ms. This time was

measured by taking the system time stamp at the beginning

and end of the installation/repair. To calculate the time

overhead added by the hash codes, we simply measure the

time taken for each hash calculation. This time is found to

average around 9 ms. The number of hash commands varies

based on the size of the code in the code does not change

with the content, the number of hash commands remain

constant.

XII.CONCLUSION AND FUTURE ENHANCEMENT

We proposed innovative approaches for automatically

logging any access to the data in the cloud together with an

auditing mechanism. Our approach allows the data owner to

not only audit his content but also enforce strong back-end

protection if needed. Moreover, one of the main features of

our work is that it enables the data owner to audit even

those copies of its data that were made without his

knowledge. We introduced modern approaches for

automatically logging any access to the data in the cloud

together with an auditing mechanism. Our approach allows

the data owner to not only audit his content but also enforce

strong back-end protection if needed. Apart from that we

have enclosed PDP methodology to enhance the integrity of

owner’s data. In future, we plan to refine our approach to

verify the integrity of JRE. For that we will look into

whether it is possible to leverage the advantage of secure

JVM being developed by IBM and we would like to

enhance our PDP architecture from user end which will

allow the users to check data remotely in an efficient

manner in multi cloud environment.

In the future, we plan to refine our approach to verify the

integrity of the JRE and the authentication of JARs [23].

For example, we will investigate whether it is possible to

leverage the notion of a secure JVM [18] being developed

by IBM. This research is aimed at providing software

tamper resistance to Java applications. In the long term, we

plan to design a comprehensive and more generic object-

oriented approach to facilitate autonomous protection of

traveling content. We would like to support a variety of

security policies, like indexing policies for text files, usage

control for executables, and generic accountability and

provenance controls.

REFERENCES
[1] P. Ammann and S. Jajodia, “Distributed Timestamp

Generation inPlanar Lattice Networks,” ACM

Trans. Computer Systems, vol.1,p. 205-225, Aug.

1993.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z.Peterson, and D. Song, “Provable Data

Possession at Untrusted Stores,” Proc. ACM Conf.

Computer and Comm. Security, pp. 598-609, 2007.

[3] E. Barka and A. Lakas, “Integrating Usage Control

with SIP-Based Communications,” J. Computer

Systems, Networks, and Comm., vol. 2008, pp. 1-8,

2008.D. Boneh and M.K. Franklin, “Identity-Based

Encryption from the Weil Pairing,” Proc. Int’l

Cryptology Conf. Advances in Cryptology, pp. 213-

229, 2001.

[4] R. Bose and J. Frew, “Lineage Retrieval for

Scientific Data

 Processing: A Survey,” ACM Computing Surveys,

vol. 37,

 pp. 1-28, Mar. 2005.

[5] P. Buneman, A. Chapman, and J. Cheney,

“Provenance Management in Curated Databases,”

Proc. ACM SIGMOD Int’l Conf. Management of

Data (SIGMOD ’06), pp. 539-550, 2006.

[6] B.Chun and A.C. Bavier,“Decentralized Trust

Management and Accountability in Federated

Systems,” Proc. Ann. Hawaii Int’l Conf.System

Sciences (HICSS), 2004.

[7] OASIS Security Services Technical

Committee, “ Security Assertion Markup

Language (saml) 2.0,” http://www.oasis-

open.org/ committees/tc ome.php?wg

 abbrev=security, 2012.
[8] R. Corin, S. Etalle, J.I. den Hartog, G. Lenzini, and

I. Staicu,“ALogicforAuditing Accountability in

Decentralized Systems,” Proc. IFIP TC1 WG1.7

Workshop Formal Aspects in Security and Trust,

pp. 187-201, 2005.

[9] B. Crispo and G. Ruffo, “Reasoning about

Accountability within Delegation,” Proc. Third Int’l

Conf. Information and Comm. Security (ICICS),

pp. 251-260, 2001.

[10] Y. Chen et al., “Oblivious Hashing: A Stealthy

Software Integrity Verification Primitive,” Proc.

Int’l Workshop formation Hiding, F. Petitcolas, ed.,

pp. 400-414, 2003.

[11] S.Etalle and W.H.Winsborough, “A Posteriori

Compliance Control,” SACMAT ’07: Proc. 12th

ACM Symp. Access control Models and

Technologies, pp. 11-20, 2007.

[12] X. Feng, Z. Ni, Z. Shao, and Y. Guo, “An Open

Framework for Foundational Proof-Carrying Code,”

Proc. ACM SIGPLAN Int’l Workshop Types in

Languages Design and Implementation, pp. 67-

78,2007.

[13] Flickr, http://www.flickr.com/, 2012.[15] R. Hasan,

R. Sion, and M. Winslett, “The Case of the Fake

Picasso: Preventing History Forgery with Secure

Provenance,” Proc. Seventh Conf. File and Storage

Technologies, pp. 1-14, 2009.

[14] J.HightowerandG.Borriello,“Location Systems for

ubiquitous

Computing,”Computer,vol.34,no.8,pp.57-66, Aug.

2001.

[15] J.W. Holford, W.J. Caelli, and A.W. Rhodes,

“Using Self-Defending Objects to Develop Security

AwareApplications in Java,” Proc. 27th

Australasian Conf. Computer Science, vol. 26, pp.

341-349, 2004.

http://www.oasis-/
http://www.oasis-/

 IJDCST @October Issue- V-1, I-6, SW-31

 ISSN-2320-7884 (Online)

 ISSN-2321-0257 (Print)

90 www.ijdcst.com

[16] TrustedJavairtualMachineIBM,http://www.almaden.

ibm.com/cs/projects/jvm/, 2012.

[17] P.T. Jaeger, J.Lin, and J.M. Grimes, “Cloud

Computing and Information Policy: Computing in a

Policy Cloud?,” J. Information Technology and

Politics, vol. 5, no. 3, pp. 269-283, 2009.

[18] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely,

“Towards a Theory of Accountability and Audit,”

Proc. 14th European Conf.Research in Computer

Security (ESORICS), pp. 152-167, 2009.

